Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2,4-Dioxo-1-(prop-2-ynyl)-1,2,3,4-tetra-hydropyrimidine-5-carbaldehyde

Yan He, Liang-Yan Cui and Xin-Ying Zhang*
School of Chemistry and Environmental Science, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
Correspondence e-mail: xyzh518@sohu.com
Received 3 August 2011; accepted 9 August 2011
Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.040 ; w R$ factor $=0.123$; data-to-parameter ratio $=12.9$.

In the crystal structure of the title compound, $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{3}$, the molecules are linked by a pairs of intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming inversion dimers. The aldehyde group is in the same plane as the pyrimidine ring [with a maximum deviation of 0.083 (2) \AA for the O atom), and the linear propargyl group $\left[\mathrm{C}-\mathrm{C}-\mathrm{C}=178.99(19)^{\circ}\right]$ makes a dihedral angle of $74.36(13)^{\circ}$ with the ring.

Related literature

For applications of acyclic pyrimidine nucleosides, see: De Clercq (2009, 2010a,b); Fan et al. (2011).

Experimental

Crystal data
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{3}$
$M_{r}=178.15$
Monoclinic, $P 2_{1} / n$
$a=5.1756$ (7) A

$$
\begin{aligned}
& b=8.4877(12) \AA \AA \\
& c=18.565(3) \AA \\
& \beta=90.611(2)^{\circ} \\
& V=815.5(2) \AA^{3}
\end{aligned}
$$

$Z=4$
$T=296 \mathrm{~K}$
Mo $K \alpha$ radiation
$\mu=0.11 \mathrm{~mm}^{-1}$
Data collection
Bruker SMART CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 1997)
$T_{\text {min }}=0.955, T_{\text {max }}=0.972$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040 \quad 118$ parameters
$w R\left(F^{2}\right)=0.123 \quad \mathrm{H}$-atom parameters constrained
$S=1.08$
$\Delta \rho_{\text {max }}=0.14 \mathrm{e}^{-3} \AA^{-3}$
1520 reflections
$0.41 \times 0.37 \times 0.25 \mathrm{~mm}$

5826 measured reflections 1520 independent reflections 1261 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.020$

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{O} 1^{\mathrm{i}}$	0.86	1.98	$2.8329(18)$	174
Symmetry code: $(\mathrm{i})-x+2,-y+2,-z+1$.				

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the National Natural Science Foundation of China (No. 20972042) and the Natural Science Foundation of Department of Education of Henan Province (No. 2008 A150013).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2760).

References

Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
De Clercq, E. (2009). Rev. Med. Virol. 19, 287-299.
De Clercq, E. (2010a). J. Med. Chem. 53, 1438-1450.
De Clercq, E. (2010b). Antiviral Res. 85, 19-24.
Fan, X.-S., Wang, Y.-Y., Qu, Y.-Y., Xu, H.-Y., He, Y., Zhang, X.-Y. \& Wang, J.-J. (2011). J. Org. Chem. 76, 982-985.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

2,4-Dioxo-1-(prop-2-ynyl)-1,2,3,4-tetrahydropyrimidine-5-carbaldehyde

Y. He, L.-Y. Cui and X.-Y. Zhang

Comment

Acyclic pyrimidine nucleosides have drawn much attention because of their insteresting structures and broad utilizations as effective drugs for the treatment of diseases caused by herpes simplex virus (HSV) and varizella zoster (VZV) (De Clercq, 2009, 2010a,b). The title compound can be used as a powerful synthon for the preparation of acyclic pyrimidine nucleoside derivatives with potential biological activities due to the rich and extensive chemistry of the aldehyde carbonyl (Fan, 2011). Herein, we report the synthesis and crystal structure of the title compound.

In the title compound, $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{3}$, all the atoms in the pyrimidine ring, atoms connected directly with the pyrimidine ring and atoms in the aldehyde carbonyl group in the 5-position of the pyrimidine ring are in the same plane, which means there is a big conjugated system in the molecule. The linear structure of the propynyl group is connected with the big plane at an angle of 150.3°. In the crystal structure, the molecules are linked via intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond.

Experimental

To a solution of $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(16.5 \mathrm{mmol})$ and $\mathrm{CuSO}_{4}(3.2 \mathrm{mmol})$ in $30 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$ was added a $\mathrm{CH}_{3} \mathrm{CN}$ solution (25 ml) of 5-methyl-1-(prop-2-ynyl)pyrimidine-2,4(1H,3H)-dione (8 mmol) and 2,6-lutidine (3.2 ml). The mixture was stirred at 60 ${ }^{\circ} \mathrm{C}$ for 5 h . Upon completion, the mixture was concentrated to half of the initial volume, and the remaining solution was extracted with EtOAc. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$. The aqueous layers were combined and back-extracted with CHCl_{3}. Then the organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then concentrated. The residue was purified through silica gel column chromatography with a mixture of methylene chloride-methanol ($60: 1, v / v$) as eluent to give 1,2,3,4-tetrahydro-2,4-dioxo-1-(prop-2-ynyl)- pyrimidine-5-carbaldehyde. Single crystals of the title compound were obtained by slow evaporation of the solvent from a methylene chloride-methanol ($60: 1 \mathrm{v} / \mathrm{v}$) solution.

Refinement

H atoms were positioned geometrically and refined using riding model, with $\mathrm{C}-\mathrm{H}=0.93$ or $0.97 \AA$, and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$.

Figures

Fig. 1. Molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

supplementary materials

Fig. 2. Crystal packing of the title compound with view along the a axis. Intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are shown as dashed lines.

2,4-Dioxo-1-(prop-2-ynyl)-1,2,3,4-tetrahydropyrimidine-5-carbaldehyde

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{3}$
$M_{r}=178.15$
Monoclinic, $P 2{ }_{1} / n$
Hall symbol: -P 2yn
$a=5.1756$ (7) \AA
$b=8.4877$ (12) \AA
$c=18.565(3) \AA$
$\beta=90.611(2)^{\circ}$
$V=815.5(2) \AA^{3}$
$Z=4$

Data collection

Bruker SMART CCD area-detector diffractometer
Radiation source: fine-focus sealed tube graphite
phi and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
$T_{\text {min }}=0.955, T_{\text {max }}=0.972$
5826 measured reflections

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.123$
$S=1.08$
1520 reflections
118 parameters
0 restraints
$F(000)=368$
$D_{\mathrm{x}}=1.451 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2188 reflections
$\theta=2.6-26.7^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Block, colourless
$0.41 \times 0.37 \times 0.25 \mathrm{~mm}$

1520 independent reflections
1261 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.020$
$\theta_{\text {max }}=25.5^{\circ}, \theta_{\text {min }}=2.6^{\circ}$
$h=-6 \rightarrow 6$
$k=-10 \rightarrow 10$
$l=-22 \rightarrow 21$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and
goodness of fit S are based on F^{2}, conventional R-factors R are based
on F, with F set to zero for negative F^{2}. The threshold expression of
$F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is
not relevant to the choice of reflections for refinement. R-factors based
on F^{2} are statistically about twice as large as those based on F, and R -
factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
C1	$0.7042(3)$	$0.8893(2)$	$0.44458(8)$	$0.0374(4)$
C2	$0.5046(3)$	$0.8128(2)$	$0.40196(8)$	$0.0376(4)$
C3	$0.4934(3)$	$0.84333(19)$	$0.33033(8)$	$0.0372(4)$
H3	0.3631	0.7959	0.3031	0.045^{*}
C4	$0.8652(3)$	$1.01190(19)$	$0.33360(8)$	$0.0368(4)$
C5	$0.3180(4)$	$0.7061(2)$	$0.43522(10)$	$0.0510(5)$
H5	0.3435	0.6787	0.4833	0.061^{*}
C6	$0.6377(3)$	$0.9724(2)$	$0.21870(8)$	$0.0432(4)$
H6A	0.4685	0.9390	0.2017	0.052^{*}
H6B	0.6512	1.0851	0.2110	0.052^{*}
C7	$0.8363(4)$	$0.8923(2)$	$0.17686(9)$	$0.0464(5)$
C8	$0.9931(4)$	$0.8282(3)$	$0.14242(11)$	$0.0612(6)$
H8	1.1175	0.7773	0.1151	0.073^{*}
N1	$0.6616(2)$	$0.93903(17)$	$0.29646(7)$	$0.0370(4)$
N2	$0.8664(3)$	$0.98582(16)$	$0.40649(7)$	$0.0398(4)$
H2	0.9818	1.0356	0.4312	0.048^{*}
O1	$0.7344(2)$	$0.87340(16)$	$0.51012(6)$	$0.0490(4)$
O2	$1.0262(2)$	$1.09061(15)$	$0.30334(6)$	$0.0472(4)$
O3	$0.1324(3)$	$0.65141(19)$	$0.40376(8)$	$0.0685(5)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0360(8)$	$0.0454(9)$	$0.0308(8)$	$0.0027(7)$	$-0.0031(6)$	$-0.0023(7)$
C2	$0.0353(8)$	$0.0442(9)$	$0.0333(8)$	$0.0011(7)$	$-0.0018(6)$	$-0.0066(7)$
C3	$0.0326(8)$	$0.0439(9)$	$0.0350(8)$	$0.0021(7)$	$-0.0041(6)$	$-0.0089(7)$
C4	$0.0365(8)$	$0.0414(9)$	$0.0323(8)$	$0.0027(7)$	$-0.0036(7)$	$-0.0023(7)$
C5	$0.0503(10)$	$0.0600(11)$	$0.0427(10)$	$-0.0103(9)$	$-0.0011(8)$	$-0.0042(8)$
C6	$0.0451(10)$	$0.0551(10)$	$0.0294(8)$	$0.0008(8)$	$-0.0085(7)$	$0.0013(7)$
C7	$0.0533(11)$	$0.0548(11)$	$0.0311(8)$	$-0.0078(9)$	$-0.0027(8)$	$-0.0019(8)$
C8	$0.0625(13)$	$0.0738(14)$	$0.0474(11)$	$-0.0033(11)$	$0.0076(10)$	$-0.0125(10)$
N1	$0.0366(7)$	$0.0471(8)$	$0.0272(7)$	$0.0016(6)$	$-0.0044(5)$	$-0.0029(6)$
N2	$0.0402(8)$	$0.0494(8)$	$0.0297(7)$	$-0.0079(6)$	$-0.0084(5)$	$-0.0014(6)$
O1	$0.0500(7)$	$0.0683(8)$	$0.0285(6)$	$-0.0120(6)$	$-0.0057(5)$	$0.0017(5)$
O2	$0.0470(7)$	$0.0566(8)$	$0.0378(7)$	$-0.0094(6)$	$-0.0019(5)$	$0.0039(5)$
O3	$0.0592(9)$	$0.0805(11)$	$0.0658(10)$	$-0.0216(7)$	$0.0004(7)$	$-0.0139(8)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{C} 1-\mathrm{O} 1$	$1.2325(19)$
$\mathrm{C} 1-\mathrm{N} 2$	$1.374(2)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.449(2)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.356(2)$
$\mathrm{C} 2-\mathrm{C} 5$	$1.465(3)$
$\mathrm{C} 3-\mathrm{N} 1$	$1.351(2)$
$\mathrm{C} 3-\mathrm{H} 3$	0.9300
$\mathrm{C} 4-\mathrm{O} 2$	$1.211(2)$
$\mathrm{C} 4-\mathrm{N} 2$	$1.371(2)$
$\mathrm{C} 4-\mathrm{N} 1$	$1.397(2)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 2$	$120.11(14)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$124.91(15)$
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2$	$114.98(13)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$118.22(15)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 5$	$120.68(15)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 5$	$121.10(15)$
$\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 2$	$123.42(14)$
$\mathrm{N} 1-\mathrm{C} 3-\mathrm{H} 3$	118.3
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	118.3
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{N} 2$	$123.44(14)$
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{N} 1$	$122.30(14)$
$\mathrm{N} 2-\mathrm{C} 4-\mathrm{N} 1$	$114.26(14)$
$\mathrm{O} 3-\mathrm{C} 5-\mathrm{C} 2$	$123.80(18)$
$\mathrm{O} 3-\mathrm{C} 5-\mathrm{H} 5$	118.1
$\mathrm{C} 2-\mathrm{C} 5-\mathrm{H} 5$	118.1
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$179.16(16)$
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-0.7(2)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 5$	$-0.4(3)$

$\mathrm{C} 5-\mathrm{O} 3$	$1.211(2)$
$\mathrm{C} 5-\mathrm{H} 5$	0.9300
$\mathrm{C} 6-\mathrm{C} 7$	$1.462(3)$
$\mathrm{C} 6-\mathrm{N} 1$	$1.475(2)$
$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	0.9700
$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$	0.9700
$\mathrm{C} 7-\mathrm{C} 8$	$1.173(3)$
$\mathrm{C} 8-\mathrm{H} 8$	0.9300
$\mathrm{~N} 2-\mathrm{H} 2$	0.8600
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{N} 1$	$112.24(14)$

C7-C6-H6A 109.2
$\mathrm{N} 1-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A} \quad 109.2$
C7-C6-H6B 109.2
$\mathrm{N} 1-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B} \quad 109.2$
H6A-C6-H6B 107.9
C8-C7-C6 178.99 (19)
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 8 \quad 180.0$
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 4 \quad 121.52$ (13)
$\mathrm{C} 3-\mathrm{N} 1$ - $66 \quad 121.56$ (13)
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 6 \quad 116.91$ (14)
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 1 \quad 127.43$ (13)
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{H} 2 \quad 116.3$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{H} 2 \quad 116.3$
$\begin{array}{ll}\mathrm{O} 2-\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 3 & 175.63(15) \\ \mathrm{N} 2-\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 3 & -4.1(2) \\ \mathrm{O} 2-\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 6 & -4.8(2)\end{array}$

sup-4

supplementary materials

$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 5$	$179.81(15)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 1$	$1.3(2)$
$\mathrm{C} 5-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 1$	$-179.19(15)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 5-\mathrm{O} 3$	$-7.1(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 5-\mathrm{O} 3$	$172.38(18)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 4$	$1.3(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 6$	$-178.27(15)$

$\mathrm{N} 2-\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 6$	$175.44(14)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 3$	$-106.92(18)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 4$	$73.53(19)$
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 1$	$-174.72(16)$
$\mathrm{N} 1-\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 1$	$5.0(2)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 4$	$177.47(15)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 4$	$-2.7(2)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{O} 1^{\mathrm{i}}$	0.86	1.98	$2.8329(18)$	174.

Symmetry codes: (i) $-x+2,-y+2,-z+1$.
supplementary materials

Fig. 1

Fig. 2

